
ON CHARACHTERIZING LINEAR LIE GROUPS BY
VON NEUMANN’S THEOREM

Sidi Mohammed BOUGHALEM

https://sithlord-dev.github.io
University François Rabelais - Tours

Let G be a closed topological subgroup of GLn(R), we shall, in this paper, characterize Lie
groups, as closed linear topological groups, by Von Neumann’s theorem, as smooth manifolds.
This appeared first in David Hilbert’s address entitled ”Mathematical Problems” before the
International Congress of Mathematicians in Paris in 1900, he proposed a list containing 23
problems varying over almost all branches of mathematics with the idea that their solutions
would lead to progress in mathematics. Among these problems, the 5th, was about defining Lie
groups as differentiable manifolds. The answer was given with the work of Andrew Gleason,
Deane Montgomery and Leo Zippin in the 1950s.

We shall here give a simple proof of this result, based on Von Neumann’s theorem, in addi-
tion to some results on differentiable and smooth manifolds.

1 The matrix exponential function

In the first section, we shall review some basic properties of the matrix exponential function.
Recall that the exponential function is a matrix function defined on square matrices, analogy to
the ordinary exponential function, given by the power series∑

k≥0

1

k!
Ak

for every matrix A ∈ Rn×n. Let ||.|| be a chosen matrix norm on Rn×n.

Proposition 1.1. 1. The matrix exponential map is locally invertible : There exists an open
neighberhood V0 ⊂ Rn×n and VIn ⊂ GLn(R) such that :

exp : V0 → VIn is a diffeomorphism

2. For all A,B,C ∈ Rn×n such that ||A||, ||B||, ||C|| ≤ 1
2 and exp(A) exp(B) = exp(C) we

have that
||C −A−B|| ≤ 17(||A||+ ||B||)2

3. For all A,B ∈ Rn×n

exp(A+B) = lim
k→∞

(exp(
A

k
) exp(

B

k
))k



Proof. 1. as exp : Rn×n → Rn×n is C∞, even analytic, we see that ∀H ∈ Rn×n∣∣∣∣∣∣∣∣ exp(0 +H)− exp(0)− idRn×n(H)

H

∣∣∣∣∣∣∣∣ ≤ ||H||∑
k≥2

1

k!
Hk−2 −→

||H||→0
0

Since
∑

1
k!H

k−2 < ∞. Hence d0(exp) = idRn×n which is a bounded isomorphism. We
apply Inverse function theorem, which gives the wanted result.
We can define log := exp−1 as follow :

∀X ∈ Rn×n : ||X|| < 1 log(In −X) = −
∑
k≥1

1

k!
Xk

2. Pose R := exp(C)− C − In and S := exp(A) exp(B)− In −A−B. We get

||R|| = ||
∑
k≥2

1

k!
Ck|| ≤

∑
k≥2

1

k!
||C||k

as ||C|| ≤ 1
2 , for k ≥ 2 : ||C||k ≤ ||C||2. And hence

||R|| ≤ ||C||2
∑
k≥2

1

k!
In = ||C||2(exp(In)− 2In) ≤ ||C||2

Same way

||S|| = ||
∑
k≥2

k∑
j=0

1

j!

1

(k − j)!
AkBj−k|| ≤

∑
k≥2

1

k!
(||A||+ ||B||)k

≤ (||A||+ ||B||)2
∑
k≥2

1

k!
In = (||A||+ ||B||)2(exp(In)− 2In)

≤ (||A||+ ||B||)2

Since C = A+B + S −R,

||C|| ≤ ||A||+ ||B||+ (||A||+ ||B||)2 + ||C||2 ≤ 2(||A||+ ||B||) +
1

2
||C||

(As ||A||+ ||B|| ≤ 1⇒ (||A||+ ||B||)2 ≤ ||A||+ ||B||) We get

1

2
||C|| ≤ 2(||A||+ ||B||)⇒ ||C|| ≤ 4(||A||+ ||B||)

Finally,

||C −A−B|| = ||S −R|| ≤ (||A||+ ||B||)2 + ||C||2 ≤ (||A||+ ||B||)2 + 16(||A||+ ||B||)2

≤ 17(||A||+ ||B||)2

3. For a large k ∈ N, the matrices
A

k
,
B

k
−→
k→∞

0Rn×n



Hence, from 1. ∃Ck ∈ Rn×n, Ck −→
k→∞

0 and

exp(
A

k
) exp(

B

k
) = exp(Ck) −→

k→∞
In

We may assume that ||Ak ||, ||
B
k ||, ||Ck|| ≤ 1

2 . Then from 2.

||Ck −
A

k
− B

k
|| ≤ 17

k2
(||A||+ ||B||)2

⇒ ||kCk −A−B|| ≤
17

k
(||A||+ ||B||)2 −→

k→∞
0

Hence
kCk −→

k→∞
A+B ⇒ exp(kCk) = exp(Ck)k −→

k→∞
exp(A+B)

and thus,

(exp(
A

k
) exp(

B

k
))k −→

k→∞
exp(A+B)

2 Lie algebra of a Lie group and main theorem

We define the Lie algebra of a linear Lie group (i.e. a closed topological subgroup G of GLn(R)
as follow :

L(G) := {A ∈ Rn×n : exp(tA) ∈ G∀t ∈ R}

Proposition 2.1. L(G) is an R-subspace of Rn×n.

Proof. Let A,B ∈ L(G), λ ∈ R. We have from 3.

exp(A+ λB) = lim
k→∞

(exp(
A

k
) exp(λ

B

k
))k

as exp(A
k ), exp(λB

k ) ∈ G, this yields (exp(A
k ) exp(λB

k ))k ∈ G by the group structure of G. And
since it’s closed :

exp(A+ λB) = lim
k→∞

(exp(
A

k
) exp(λ

B

k
))k ∈ G ⇒ A+ λB ∈ L(G)

Theorem 2.2 (Von Neumann). Let G be a closed subgroup of GLn(R), then there is an open
neighbourhood U0 in L(G) and VIn in G such that

exp|U0
: U0 −→ VIn is a diffeomorphism

Proof. As seen below, since L(G) is an R-subspace of Rn×n, L(G) := L admit a supplementary
subspace S in Rn×n :

Rn×n = L⊕ S

Consider



f : Rn×n −→ GLn(R)
X = l + s 7−→ exp(l) exp(s)

It is easy to see that idRn×n , is a bounded isomorphism. We apply Inverse function theorem to
get U ∈ V0(Rn×n), V ∈ VIn(GLn(R)) such that

f : U −→ V is a diffeomorphism

Pose U = B 1
k

(0) = {X ∈ Rn×n, ||X|| ≤ 1
k}. We have that

f(L ∩B 1
k

) ⊂ G ∩ f(B 1
k

)

We will show that those subsets are equal actually. Suppose they are not, then

∃xk −→
k→∞

0 and f(xk) ∈ G \ f(L ∩B 1
k

) .

As xk = lk + sk, by continuity of the projection on S, sk −→
k→∞

0 and sk 6= 0 because other-

wise, xk ∈ L ∩B 1
k

.

Pose ∀k ∈ N
rk :=

sk
||sk||

Since ||rk|| = 1, rk ∈ BIn(0) the unit ball of Rn×n. As we are in finite dimensions, it is compact.
We can hence extract a convergent subsequence from rk.

Replacing it with this subsequence, we may that rk −→
k→∞

r. We pose ∀t ∈ R t
||sk|| = a + bk

with a ∈ Z and |bk| < 1
2 , bk ∈ R.

We have then that

exp(sk)a = exp(ask) = exp(trk − bksk) −→
k→∞

exp(tr) ∈ G

(since |bk| <∞ and sk −→
k→∞

0)

Hence r ∈ L ∩ S = {0} ⇒ r = 0 which is absurd since ||r|| = 1. Thus

f(L ∩B 1
k

) = G ∩ f(B 1
k

)⇒ exp|L : B 1
k
∈ V0(L) −→ f(B 1

k
) ∈ VIn(G)

3 Differentiable and smooth manifolds

Let M be a topological space, we say that M is a topological manifold of dimension n if M
is Hausdorff, second countable and locally euclidean of dimension n : Each point of M has a
neighbourhood that is homeomorphic to Rn. More particularly, the third assertion means that
for every x ∈M we can find :

• an open subset U ⊂M containing x.

• an open subset U ′ ⊂ Rn.



• φ : U −→ U ′ a homemorphism.

Definition 3.1. • The pairs (U, φ) as described above are called charts of M .

• If (U, φ), (V, ψ) are two charts such that U ∩ V = ∅, then the composition map ψ ◦ φ−1 :
φ(U ∩ V ) −→ ψ(U ∩ V ) is called the transition map from φ to ψ.

• Two charts (U, φ), (V, ψ) are said to be smoothly compatible if U∩V = ∅ or the transition
map is a diffeomorphism.

• We define an atlas for M to be a collection of charts whose domains cover M , an Atlas is
said to be smooth if each two charts in it are smoothly compatible.

We define finally a smooth manifold as a topological manifold with a smooth atlas.
Recall Theorem 2.2, by posing ∀g ∈ G :

φg : Vg = gVIn −→ V0
gx 7−→ log(x)

Then this is clearly a homeomorphism, from a g-neighbourhood of G onto a neighbourhood of
Rn and thus (Vg, φg) is a chart, hence, G is a topological manifold. By computing for g, h ∈ G

φh ◦ φ−1g : φg(Vg ∩ Vh) −→ φh(Vg ∩ Vh)

Then clearly, the transition map between any two charts (Vg, φg), (Vh, φh) is a diffeomorphism,
and hence, G is a smooth manifold.
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